COM: rel 1 begin
COM: rel 1 summary
COM: rel 1 intro
COM: binrel com
ABS: Refl(T;x,y.E(x;y))
STM: refl wf
STM: refl functionality wrt iff
ABS: Sym(T;x,y.E(x;y))
STM: sym wf
STM: sym functionality wrt iff
ABS: Trans(T;x,y.E(x;y))
STM: trans wf
STM: trans functionality wrt iff
STM: trans rel self functionality
ABS: EquivRel(T;x,y.E(x;y))
STM: equiv rel wf
STM: equiv rel subtyping
ABS: Preorder(T;x,y.R(x;y))
STM: preorder wf
COM: symmetrize com
ABS: Symmetrize(x,y.R(x;y);a;b)
STM: symmetrize wf
STM: symmetrized preorder
STM: trans rel func wrt sym self
STM: equiv rel iff
STM: equiv rel functionality wrt iff
COM: equiv rel self fun com
STM: equiv rel self functionality
STM: squash thru equiv rel
ABS: IsEqFun(T;eq)
STM: eqfun p wf
STM: sq stable eqfun p
ABS: AntiSym(T;x,y.R(x;y))
STM: anti sym wf
STM: anti sym functionality wrt iff
ABS: StAntiSym(T;x,y.R(x;y))
STM: st anti sym wf
ABS: strict_part(x,y.R(x;y);a;b)
STM: strict part wf
STM: strict part irrefl
ABS: Connex(T;x,y.R(x;y))
STM: connex wf
STM: connex functionality wrt iff
STM: connex functionality wrt implies
STM: connex iff trichot
ABS: Order(T;x,y.R(x;y))
STM: order wf
STM: order functionality wrt iff
ABS: Linorder(T;x,y.R(x;y))
STM: linorder wf
STM: linorder functionality wrt iff
STM: sq stable refl
STM: sq stable sym
STM: sq stable trans
STM: sq stable anti sym
STM: sq stable connex
STM: order split
ABS: Irrefl(T;x,y.E(x;y))
STM: irrefl wf
STM: trans imp sp trans
STM: trans imp sp trans a
STM: trans imp sp trans b
STM: linorder le neg
STM: linorder lt neg
COM: rel 1 end